- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Harding, Brian J (2)
-
Immel, Thomas J (2)
-
Maute, Astrid (2)
-
Alken, Patrick (1)
-
Becker, Erich (1)
-
Bristow, William A (1)
-
Conde, Mark (1)
-
Gasque, L Claire (1)
-
Mende, Stephen (1)
-
Sheng, Cheng (1)
-
Shi, Xueling (1)
-
Triplett, Colin C (1)
-
Vadas, Sharon L (1)
-
Wu, Yen-Jung J (1)
-
Wu, Yen-Jung Joanne (1)
-
Wu, Yen‐Jung (1)
-
Zou, Ying (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Winds in the nighttime upper thermosphere are often observed to mimic the ionospheric plasma convection at polar latitudes, and whether the same is true for the daytime winds remains unclear. The dayside sector is subject to large temperature gradient set up by solar irradiance and it also contains the cusp, which is a hotspot of Poynting flux and a region with the strongest soft particle precipitation. We examine daytime winds using a Scanning Doppler Imager (SDI) located at the South Pole, and investigate their distribution under steadily positive and negative IMF Byconditions. The results show that daytime winds exhibit significant differences from the plasma convection. Under negative IMF Byconditions, winds flow in the same direction as the plasma zonally, but have a meridional component that is strongest in the auroral zone. As a result, winds are more poleward-directed than the plasma convection within the auroral zone, and more westward-directed in the polar cap. Under positive IMF Byconditions, winds can flow zonally against the plasma in certain regions. For instance, they flow westward in the polar cap despite the eastward plasma convection there, forming a large angle relative to the plasma convection. The results indicate that ion drag may not be the most dominant force for daytime winds. Although the importance of various forcing terms cannot be resolved with the utilized dataset, we speculate that the pressure gradient force in the presence of cusp heating serves as one important contributor.more » « less
-
Gasque, L Claire; Harding, Brian J; Immel, Thomas J; Wu, Yen‐Jung; Triplett, Colin C; Vadas, Sharon L; Becker, Erich; Maute, Astrid (, Journal of Geophysical Research: Space Physics)Abstract The moving solar terminator (ST) generates atmospheric disturbances, broadly termed solar terminator waves (STWs). Despite theoretically recurring daily, STWs remain poorly understood, partially due to measurement challenges near the ST. Analyzing Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) data from NASA's Ionospheric Connection Explorer (ICON) observatory, we present observations of STW signatures in thermospheric neutral winds, including the first reported meridional wind signatures. Seasonal analysis reveals STWs are most prominent during solstices, when they intersect the ST about ∼20° latitude from the equator in the winter hemisphere and have phase fronts inclined at a ∼40° angle to the ST. We also provide the first observed STW altitude profiles, revealing large vertical wavelengths above 200 km. Comparing these observations to four different models suggests the STWs likely originate directly or indirectly from waves from below 97 km. STWs may play an under‐recognized role in the daily variability of the thermosphere‐ionosphere system, warranting further study.more » « less
-
Wu, Yen-Jung J; Mende, Stephen; Harding, Brian J; Alken, Patrick; Maute, Astrid; Immel, Thomas J (, Space Science Reviews)
An official website of the United States government
